Research Interest: Physiology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Wallet, Shannon PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research interests are focused on mechanisms associated with altered innate immune functions, which lead to dysregulated adaptive immunity. Currently my research program has three major arms integrated through with a central philosophy. Specifically, our laboratory focuses on the contribution of epithelial cell biology and signaling to innate and adaptive immune homeostasis and dysfunction. We study the contribution of what I term ‘epithelial cell innate immune (dys)function’ to three major disease conditions: pancreatic cancer, type 1 diabetes (autoimmunity), and periodontal disease (autoinflammation). While appearing to be a diverse research program, we have found that many of the mechanisms and systems in play are surprisingly (or maybe not so surprisingly) similar allowing for rapid translation of our findings. Importantly, previous investigations into the role of epithelial cells in immunobiology have been hindered by a lack of robust primary cell culture techniques, which our laboratory has been able to overcome using both animal and human tissues. Thus, using our novel and unique tools we are able to evaluate our findings in the human conditions, again making translation of our findings that much more feasible. In addition to my primary research objectives, my collaborative research programs, have allowed me to be involved, at some level, in investigating the basic biology of health, multiple autoimmune conditions, autoinflammation, sepsis, and exercise induced inflammation I have been blessed with the opportunities to couple my passions and expertise with that of others to bring together multiple research communities with the goal of advancing human health and hope to be able to continue to do so for years to come. |
Button, Brian WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Button lab in the Department of Biochemistry and Biophysics is part of the Marsico Lung Institute. Our lab is actively involved in projects that are designed to define the pathogenesis of muco-obstructive pulmonary disorders and to identify therapies that could be used to improve the quality of life in persons afflicted by these diseases. In particular, our research works to understand the biochemical and biophysical properties of mucin biopolymers, which give airway mucus its characteristic gel-like properties, and how they are altered in diseases such as Asthma, COPD, and cystic fibrosis. |
Dickerson, Brad PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Research in my lab focuses on how motor output is structured by precise sensory input. To do so, we study the flight control circuitry of the fruit fly, Drosophila melanogaster. By studying these questions in Drosophila, we can leverage the powerful genetic toolkit available for the mapping, imaging, and manipulation of neural circuits. The lab directs its attention on structures that are unique to flies, known as the halteres, which act as dual-function gyroscopes that help structure the wingstroke. We take an integrative approach, combining in vivo imaging, muscle physiology, and behavior.
|
Scherrer, Gregory WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Pain is a complex experience with sensory and emotional components. While acute pain is essential for survival, chronic pain is a debilitating disease accompanied by persistent unpleasant emotions. Efficient medications against chronic pain are lacking, and the absence of alternative to opioid analgesics has triggered the current Opioid Epidemic. Our lab studies how our nervous system generates pain perception, at the genetic, molecular, cellular, neural circuit, and behavioral levels. We also seek to understand how opioids alter activity in neural circuits to produce analgesia, but also side effects such as tolerance, addiction and respiratory depression. To this aim, we investigate the localization, trafficking and signaling properties of opioid receptors in neurons. These studies clarify pain and opioid mechanisms for identifying novel non-addictive drug targets to treat pain and strategies to dissociate opioid analgesia from deleterious effects. |
Jensen, Brian WEBSITE |
PHD PROGRAM RESEARCH INTEREST |
Our lab uses cell culture and animal models to define the mechanisms that lead to heart failure and to identify novel approaches to its treatment. We are particularly interested in the roles of inflammation and cardiomyocyte metabolism in the pathobiology of the failing heart. Ongoing projects focus on (1) the cardioprotective role of the alpha-1A adrenergic receptor; (2) transcriptional regulation by the nuclear receptor ROR-alpha; (3) cardiotoxicity of antineoplastic kinase inhibitors. |
Giovannucci, Andrea WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The neural engineering laboratory seeks to replace motor and cognitive functions lost by injury or disease via optical non-invasive neuroprostheses. Bidirectional (i.e. sensory and motor) photonic interfaces with intact portions of the nervous system can help recover functions lost in distant injured brain regions. The lab deploys experimental (brain imaging, optogenetics) and computational (deep neural networks, machine learning algorithms) techniques to modulate and record brain activity in closed-loop and real-time. The laboratory also develops open-source tools for the neuroscience community. |
O'Brien, Lori WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Modern Technologies from next-gen sequencing to high resolution imaging have advanced our knowledge of kidney development, function, and disease. We are among the pioneers utilizing techniques such as CHIP-seq, RNA-seq, modern genome editing, and imaging to understand how regulatory programs control progenitor populations during kidney development. Our goal is to understand how these programs contribute to progenitor specification and maintenance, and how they are altered during disease and aging. Our ultimate goal is translational applications of our research to develop new therapeutics and regenerative strategies. |
Griffith, Boyce WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My group develops and deploys computational tools to predict physiological function and dysfunction. We are interested in a range of applications in medicine and biology, but our primary focus is the cardiovascular system. My group is actively developing fluid-structure interaction (FSI) models of the heart, arteries, and veins, and of cardiovascular medical devices, including bioprosthetic heart valves, ventricular assist devices, and inferior vena cava filters. We are also validating these models using in vitro and in vivo approaches. We also model cardiac electrophysiology and electro-mechanical coupling, with a focus on atrial fibrillation (AF), and aim to develop mechanistically detailed descriptions of thrombosis in AF. This work is carried out in collaboration with clinicians, engineers, computer and computational scientists, and mathematical scientists in academia, industry, and regulatory agencies. |
Hige, Toshi WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Flexibility of the brain allows the same sensory cue to have very different meaning to the animal depending on past experience (i.e. learning and memory) or current context. Our goal is to understand this process at the levels of synaptic plasticity, neural circuit and behavior. Our model system is a simple brain of the fruit fly, Drosophila. We employ in vivo electrophysiology and two-photon calcium imaging together with genetic circuit manipulation. Taking advantage of this unique combination, we aim to find important circuit principles that are shared with vertebrate systems.
|
Tong, Haiyan WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Research in my laboratory focuses on the cardiovascular effects of air pollution and other environmental pollutants in human, animal, and in vitro models, as well as the dietary interventional strategies to mitigate the adverse health effects of air pollution exposure. We are currently conducting two clinical studies to investigate the cardiopulmonary effects of air pollution exposure, and to determine whether dietary omega-3 fatty acids can mitigate the air pollution-induced health effects in human volunteers. These studies provide good training opportunities for students who are interested in training in clinical and translational toxicology research. |