Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Vogt, Matthew
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Molecular Biology, Pathogenesis & Infection, Translational Medicine, Virology

We want to understand why common pediatric respiratory virus infections cause severe disease in some people. Currently we focus on enterovirus D68, which typically causes colds but rarely causes acute flaccid myelitis, a polio-like paralyzing illness in children. We study both the pathogen and the host immune response, as both can contribute to pathogenesis. Projects focus on use of reverse genetic systems to create reporter viruses to infect both human respiratory epithelial cultures and small animal models such as mice. Human monoclonal antibody effects on pathogenesis are also of interest.

Joseph, Sarah B.

EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Evolutionary Biology, Genetics, Neurobiology, Pathogenesis & Infection, Virology

We use studies of HIV/SIV evolution to reveal information about viral dynamics in vivo. This typically involves genetic and/or phenotypic analyses of viral populations in samples from HIV-infected humans or SIV-infected nonhuman primates (NHPs). We are currently exploring the mechanisms that contribute to neurocognitive impairment in HIV-infected people by sequencing viral populations in the CNS of humans and NHPs not on antiretroviral therapy. We are also using these approaches to examine viral populations that persist during long-term antiretroviral therapy in an effort to better understand the viral reservoirs that must be targeted in order to cure HIV-infected people.

Wallet, Shannon

EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Oral & Craniofacial Biomedicine

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Immunology, Pathogenesis & Infection, Physiology, Toxicology, Translational Medicine

My research interests are focused on mechanisms associated with altered innate immune functions, which lead to dysregulated adaptive immunity. Currently my research program has three major arms integrated through with a central philosophy. Specifically, our laboratory focuses on the contribution of epithelial cell biology and signaling to innate and adaptive immune homeostasis and dysfunction. We study the contribution of what I term ‘epithelial cell innate immune (dys)function’ to three major disease conditions: pancreatic cancer, type 1 diabetes (autoimmunity), and periodontal disease (autoinflammation). While appearing to be a diverse research program, we have found that many of the mechanisms and systems in play are surprisingly (or maybe not so surprisingly) similar allowing for rapid translation of our findings. Importantly, previous investigations into the role of epithelial cells in immunobiology have been hindered by a lack of robust primary cell culture techniques, which our laboratory has been able to overcome using both animal and human tissues. Thus, using our novel and unique tools we are able to evaluate our findings in the human conditions, again making translation of our findings that much more feasible. In addition to my primary research objectives, my collaborative research programs, have allowed me to be involved, at some level, in investigating the basic biology of health, multiple autoimmune conditions, autoinflammation, sepsis, and exercise induced inflammation I have been blessed with the opportunities to couple my passions and expertise with that of others to bring together multiple research communities with the goal of advancing human health and hope to be able to continue to do so for years to come.

Browne, Edward
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Cell Biology, Immunology, Pathogenesis & Infection, Systems Biology, Virology

We study the molecular mechanisms of HIV latency. Transcriptional silencing of HIV is a key mechanism of persistence in patients, and is a barrier to viral eradication, but little is known about the latent reservoir or the molecular mechanisms that regulate it. As such, our repertoire of drugs for targeting latently infected cells is limited. Some latency reversing agents (LRAs) have been developed, but these are typically reactivate only a minor subset of proviruses. This inefficiency is in part due to the reservoir not constituting a uniform target, but instead being a heterogeneous set of cells with diverse characteristics and restrictions to HIV expression. However, most analyses of latency use bulk cell cultures assays in which crucial information about the behavior of individual cells is lost. Also, latently infected cells in patient samples are exceedingly rare, making them very difficult to study directly. New technological breakthroughs in the field of single cell analysis as well as the development of primary cell models for HIV latency now open the possibility of observing how latently infected cells form and are maintained at single cell resolution. Our lab has developed tools to study the establishment, maintenance and reversal of HIV latency at single cell resolution using multi-omics methods. Furthermore, we combine these approaches with genetic perturbation, time-lapse microscopy and novel bioengineering tools to gain insight into how the host cell regulates HIV latency. We have recently discovered using single cell RNAseq (scRNAseq) that latency in primary CD4 T cells is associated with expression of a distinct transcriptional signature (Bradley et al 2018). Our hypothesis is that this signature represents part of a cellular program that regulates latency, and that this program is an exciting novel target for the development of LRAs. Ongoing projects in the lab involve the application of new technologies to our model systems, and testing/validation of the roles of host cell pathways we have identified in HIV latency. Our overall goal is to identify new targets for the development of drugs to clear the HIV reservoir.

Milner, Justin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Computational Biology, Genomics, Immunology, Pathogenesis & Infection, Translational Medicine

The overall focus of our lab is to develop new and exciting approaches for enhancing the efficacy of cancer immunotherapies. We utilize cutting-edge techniques to identify transcriptional and epigenetic regulators controlling T cell differentiation and function in the tumor microenvironment, and we seek to leverage this insight to reprogram or tailor the activity of T cells in cancer. Our group is also interested in understanding how to harness or manipulate T cell function to improve vaccines and immunotherapies for acute and chronic infections.

Cameron, Craig E.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Biochemistry, Cell Biology, Drug Discovery, Pathogenesis & Infection, Virology

Our laboratory now studies mechanisms of genome replication and pathogenesis of respiratory enteroviruses and evolution of neurovirulence using the tools of mechanistic enzymology, cell biology, stem-cell engineering, and virology. Our laboratory is also pioneering the development of tools to monitor viral infection dynamics on the single-cell level, aka “single-cell virology.”

Vincent, Benjamin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Microbiology & Immunology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genomics, Immunology, Systems Biology, Translational Medicine

The Vincent laboratory focuses on immunogenomics and systems approaches to understanding tumor immunobiology, with the goal of developing clinically relevant insights and new cancer immunotherapies.  Our mission is to make discoveries that help cancer patients live longer and better lives, focusing on research areas where we feel our work will lead to cures. Our core values are scientific integrity, continual growth, communication, resource stewardship, and mutual respect.

Dotti, Gianpettro
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology

The overall focus of the laboratory is to develop immunotherapy strategies to treat human malignancies. Specifically, one area of research is dedicated to the genetic engineering of immune cells to redirect their specificity to tumor-associated antigens. The most effective strategies developed in the laboratory are then translated into phase I clinical studies since we have access to the cellular therapeutic facility at UNC. The second area of research is dedicated to the tumor microenvironment and the development of engineering strategies aimed at countering its immunosuppressive properties.

Tsagaratou, Ageliki
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Genetics, Genomics, Immunology, Molecular Biology

We aim to dissect the epigenetic and transcriptional mechanisms that shape T cell lineage specification during development in the thymus and in the periphery upon antigen (microbial, viral) encounter. Aberrant expression of transcription and epigenetic factors can result in inflammation, autoimmunity or cancer. We are using gene deficient mouse models, multiparameter Flow Cytometry, molecular biology assays and next generation sequencing technologies to elucidate the regulatory information in cells of interest (transcriptome, epigenome, transcription factor occupancy).

Savoldo, Barbara
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Translational Medicine

My research interests are in the immunology and pathogenesis of Epstein-Barr virus (EBV) associated lymphomas developing in immunosuppressed patients. I have studied the use of EBV specific cytotoxic T-cells (CTLs) for therapy of post-transplant EBV-associated lymphoproliferative disease (PTLD). I am also interested in the preclinical development of cancer immunotherapy approaches for hematological and solid tumors, specifically by using T cells as platform for exploring genetic immune-manipulations to redirect them to tumors by transgenic expression of alpha-betaTCRs or of chimeric antigen/tumor-specific receptors (CARs). My research also focus on gene modifications aimed at improving the homing of T cells to tumor cells , improving their proliferation and persistence and finally overcoming  the inhibitory effect of the tumor environments, including effects of regulatory T (Treg) cells.